ARTICLE IN PRESS

Available online at www.sciencedirect.com

Proceedings of the Combustion Institute

Proceedings of the Combustion Institute 000 (2016) 1-8

www.elsevier.com/locate/proci

Mechanism of conditioner CaO on NO_x precursors evolution during sludge steam gasification

Qiang Zhang^a, Huan Liu^{a,b,*}, Geng Lu^a, Linlin Yi^a, Hongyun Hu^a, Hetian Chi^c, Hong Yao^{a,b,*}

^a State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huangzhong University of Science and Technology, Wuhan 430074, China

^b Department of New Energy Science and Engineering, School of Energy and Power Engineering, Huangzhong University of Science and Technology, Wuhan 430074, China

^c Faculty of Engineering, The University of Nottingham, University Park, Nottingham NG7 2RD, UK

Received 3 December 2015; accepted 2 September 2016 Available online xxx

Abstract

NH₃ and HCN are the predominant NO_x precursors generated from sludge steam gasification. CaO is a traditional chemical conditioner for sludge dewatering and it can also help control the emission of NO_x precursors when used as an additive in coal pyrolysis. This work investigated the influence of conditioner CaO on NO_x precursors evolution using an improved drop-tube/fixed-bed reactor at temperatures ranging from 873 K to 1273 K. An NH₃ decomposition experiment was conducted to further verify the mechanism underlying the effects of char. Results showed that by changing the compositions and proportions of volatile-N, conditioner CaO reduced HCN production by 9.9% and 5.3%, whereas increased NH₃ yield by 8.4% and 11.5% at 873 K and 1073 K, respectively. The hydrolysis of nitrile-N and HCN occurred readily in the gasification of volatiles in CaO conditioned sludge (named S-CaO). When char participated in the steam reforming of volatiles, S-CaO char showed good capacity for NH₃ decomposition at 1073 K. The final amount of NH₃ emissions was 11.3% lower than that of the gasification of raw sludge (named RS). CaO was able to catalyze the conversion of NH_3 to N_2 , which can be promoted by steam. S-CaO ash was likely to oxidize NH_3 to NO. However, for S-CaO char, with the synergic effect of char carbon and conditioner CaO, NH₃ and NO were transformed into N_2 within a short time. This demonstrated that reusing conditioner CaO during sludge steam gasification at high temperatures is a promising technology for the control of NO_x precursors emissions.

© 2016 by The Combustion Institute. Published by Elsevier Inc.

Keywords: Sewage sludge; Conditioner CaO; NOx precursors; Steam gasification

1. Introduction

* Corresponding authors. Fax: +86 27 87545526. *E-mail addresses:* huanliu@hust.edu.cn (H. Liu),

hyao@mail.hust.edu.cn (H. Yao).

Steam gasification is a promising technology for the conversion of solid fuel to H_2 -rich gas, which may help meet the increasing demands for clean en-

http://dx.doi.org/10.1016/j.proci.2016.09.006 1540-7489 $^{\odot}$ 2016 by The Combustion Institute. Published by Elsevier Inc.

Please cite this article as: Q. Zhang et al., Mechanism of conditioner CaO on NOx precursors evolution during sludge steam gasification, Proceedings of the Combustion Institute (2016), http://dx.doi.org/10.1016/j.proci.2016.09.006

