Chemosphere 263 (2021) 127920

Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

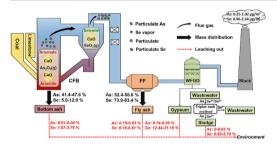
Migration and emission behavior of arsenic and selenium in a circulating fluidized bed power plant burning arsenic/seleniumenriched coal

Yongda Huang, Hongyu Gong, Hongyun Hu^{*}, Biao Fu, Bing Yuan, Shuai Li, Guangqian Luo, Hong Yao

State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road #1037, Wuhan, 430074, Hubei, China

HIGHLIGHTS

- As was enriched in bottom ash and fly ash while Se was mostly trapped by fly ash.
- Most selenite was of poor thermal stability and formed in lowtemperature regions.
- As removal from WFGD wastewater was more efficient than Se by triplettank method.
- As and Se contents in the stack were 0.25-1.02 and 0.96-2.24 µg/m³, receptively.
- The leachability of As/Se followed: gypsum > fly ash \approx sludge > bottom ash.


ARTICLE INFO

Article history: Received 13 May 2020 Received in revised form 23 July 2020 Accepted 3 August 2020 Available online 12 August 2020

Handling Editor: X. Cao

Keywords: Coal combustion Circulating fluidized bed Arsenic Selenium Migration and emission

GRAPHICAL ABSTRACT

ABSTRACT

Arsenic (As) and selenium (Se) pollution caused by coal combustion is receiving increasing concerns. The environmental impacts of As/Se are determined not only by stack emission but also by leaching process from combustion byproducts. For a better control of As/Se emission from As/Se-enriched coal combustion, this study investigated the migration and emission behavior of As/Se in a circulating fluidized bed (CFB) power plant equipped with fabric filter (FF) and wet flue gas desulfurization (WFGD) system. The results demonstrated that arsenic was both enriched in bottom ash (41.4-47.6%) and fly ash (52.4 -58.6%), while selenium was mainly captured by fly ash (73.9-83.4%). Limestone injection into furnace promoted As/Se retention in ash residues. Arsenic was mainly converted into arsenate in hightemperature regions and partly trapped in bottom ash as arsenite. In contrast, selenium capture mainly occurred in low-temperature flue gas by the formation of selenite, because of the poor thermal stability of most selenite. Triplet-tank method can totally remove arsenic in WFGD wastewater. And 18.4 -58.7% of selenium was removed, resulting from the precipitation of Se⁴⁺ anions with highly soluble Se⁶⁺ anions remaining in wastewater. The concentrations of As and Se in the stack emission were 0.25 -1.02 and $0.96-2.24 \,\mu g/m^3$, receptively. The CFB boiler equipped with FF + WFGD was shown to provide good control of the As/Se emission into the atmosphere. Leaching tests suggested that more attention should be paid to As leachability from fly ash/gypsum, and Se leachability from gypsum/sludge.

© 2020 Elsevier Ltd. All rights reserved.

Corresponding author. E-mail address: hongyunhu@hust.edu.cn (H. Hu).

https://doi.org/10.1016/j.chemosphere.2020.127920 0045-6535/© 2020 Elsevier Ltd. All rights reserved.

霐 Chemosphere