

Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

The potential oxidation characteristics of CaCr₂O₄ during coal combustion with solid waste in a fluidized bed boiler: A thermogravimetric analysis

Hongyu Gong ^a, Yongda Huang ^a, Hongyun Hu ^{a, *}, Mengya Shi ^a, Biao Fu ^a, Cong Luo ^a, Dahai Yan ^b, Hong Yao ^a

- ^a State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
- b State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China

HIGHLIGHTS

- Cr oxidation was determined by the formation, oxidation and sulfation of CaCr2O4.
- Nucleation and growth model was fitted to the formation and oxidation of CaCr2O4.
- CaCr₂O₄ sulfation could be described by shrinking core model.
- Available calcium content affected not only oxidation rate but also product species.
- CaCr₂O₄ sulfation was easier to occur than CaCr₂O₄ oxidation.

ARTICLE INFO

Article history:
Received 1 July 2020
Received in revised form
4 August 2020
Accepted 6 August 2020
Available online 13 August 2020

Handling Editor: Y Yeomin Yoon

Keywords: Solid waste co-firing CaCr₂O₄ oxidation Kinetics Calcium compounds Circulating fluidized bed boiler

ABSTRACT

 $CaCr_2O_4$ (Cr (III)), mainly generated through the decomposition of $CaCrO_4$ (Cr (VI)), is a significant intermediate for toxic Cr (VI) formation during solid fuel combustion. In this study, the formation, oxidation and sulfation kinetics of $CaCr_2O_4$ were analyzed to forecast the potential of $CaCr_2O_4$ oxidation during co-firing of coal and solid waste in a circulating fluidized bed boiler. The results indicated that the formation and oxidation of $CaCr_2O_4$ were fitted to a single step nucleation and growth model while $CaCr_2O_4$ sulfation was fitted to a shrinking core model. $CaCr_2O_4$ formation through $CaCrO_4$ decomposition was favored in oxygen-lean atmosphere and considerably suppressed in the presence of oxygen. In contrast, $CaCr_2O_4$ oxidation was mainly determined by the contacts between $CaCr_2O_4$ and $CaSO_4/CaO$, which influenced not only oxidation rates but also the product species. Moreover, the oxidation reactivity of $CaCr_2O_4$ was higher in the presence of CaO than that of $CaSO_4$. On the other hand, $CaCr_2O_4$ sulfation can occur more easily than $CaCr_2O_4$ oxidation, the reaction rate of which was deeply affected by sulfate product layer. Findings in this study suggested that spraying calcium in furnace for desulphurization may increase the risk of $CaCr_2O_4$ oxidation. Measures including the adjustment of Ca/S ratio in blended fuel (with added limestone) and operating conditions (such as temperature and local atmosphere) in cofiring system could be taken to control $CaCr_2O_4$ formation and oxidation.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

In China, large amounts of organic solid wastes (such as municipal sludge, paper sludge, waste clothes) need urgent treatment (N.B.S. China, 2019). Co-firing solid waste with coal in a

* Corresponding author. E-mail address: hongyunhu@hust.edu.cn (H. Hu). circulating fluidized boiler (CFB) is an efficient and cost-effective method for energy recovery from these wastes (Fu et al., 2019). During combustion, air pollution control devices equipped in coal-fired power plants have good performance on controlling pollutant emissions (e.g. heavy metals, SO₂, NO_x) (Xue et al., 2020; Wen et al., 2015). Different from arsenic (As), lead (Pb) and other semi-volatile traced elements, chromium (Cr) is less volatilized and distributed more in bottom ash (Chen et al., 2019; Zhao et al., 2018). More