Contents lists available at ScienceDirect

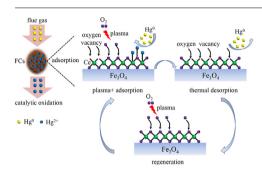
Chemical Engineering Journal

journal homepage: www.elsevier.com/locate/cej

Adsorption and catalytic oxidation of elemental mercury over regenerable magnetic Fe–Ce mixed oxides modified by non-thermal plasma treatment

Yang Xu, Guangqian Luo*, Qicong Pang, Shuangwu He, Fangfang Deng, Yongqing Xu, Hong Yao*

State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China


HIGHLIGHTS

G R A P H I C A L A B S T R A C T

- Non-thermal plasma is proposed to modify magnetic Fe–Ce oxides for efficient Hg⁰ removal.
- The Hg⁰ removal performance is substantially increased after non-thermal plasma treatment.
- The Hg⁰ removal mechanism was revealed by XPS, Hg-TPD and pseudo-second-order model.
- The spent Fe—Ce oxides can be effectively regenerated via non-thermal plasma treatment.

ARTICLE INFO

Keywords: Mercury Flue gas Catalyst Non-thermal plasma Regeneration Magnetism

ABSTRACT

This study proposes the novel application of non-thermal plasma treatment to improve the oxidation capacity of regenerable magnetic Fe–Ce mixed oxides (FCs) for the efficient removal of elemental mercury (Hg⁰) from coal combustion flue gas. Sample characterization shows that the textural property, crystalline phases, and magnetic property of FCs undergo no obvious changes after plasma treatment. But greater Ce⁴⁺ concentration and richer lattice oxygen are generated on the treated FCs. The treated FCs exhibit far better Hg⁰ removal performance compared to raw FC. The effects of treatment time (0–20 min), reaction temperature (100–250 °C), and flue gas components (SO₂, NO, O₂, HCl and H₂O) on Hg⁰ removal performance are also discussed. Both Hg⁰ adsorption capacity and adsorption rate evaluated at 150 °C for the treated FCs are extremely close to those obtained with a commercial activated carbon manufactured specifically for mercury removal from flue gas. Furthermore, the Hg⁰ adsorption and catalytic oxidation. Ce⁴⁺ species with greater oxidation state and lattice oxygen are largely consumed during the Hg⁰ removal process. However, these components are replenished by subsequent non-thermal plasma treatment. Finally, the spent FCs can be effectively recycled through magnetic separation, thermal plasma treatment.

1. Introduction

Mercury has become a severe threat to human health worldwide because of its bioaccumulation, toxicity, and persistence in the environment [1,2]. Combustion flue gas emissions from coal-fired power

plants are currently considered to be the main anthropogenic sources of mercury [3,4]. Three species of mercury are primarily found in coal combustion flue gas: elemental mercury (Hg^0) , oxidized mercury (Hg^{2+}) , and particulate-bound mercury (Hg^P) [5–8]. Hg^{2+} and Hg^P can be effectively removed by currently existing air pollution control

https://doi.org/10.1016/j.cej.2018.10.145

Received 26 July 2018; Received in revised form 21 September 2018; Accepted 18 October 2018 Available online 19 October 2018

1385-8947/ © 2018 Elsevier B.V. All rights reserved.

^{*} Corresponding authors. E-mail addresses: guangqian.luo@hust.edu.cn (G. Luo), hyao@hust.edu.cn (H. Yao).