Fuel 184 (2016) 409-417

Contents lists available at ScienceDirect

Fuel

journal homepage: www.elsevier.com/locate/fuel

Full Length Article

Steam gasification behavior during coal combustion and CaO regeneration in $O_2/CO_2/s$ team atmosphere

Zehua Li^{a,b}, Yin Wang^{b,*}, Zhiwei Li^b, Guangqian Luo^a, Shiying Lin^c, Hong Yao^{a,*}

^a State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
^b Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
^c Japan Coal Energy Center, 3-14-10 Mita, Minato-ku, Tokyo 108-0073, Japan

HIGHLIGHTS

G R A P H I C A L A B S T R A C T

 CO_2 O₂ diffusion CO₂ C¹⁶O¹⁸O H₂¹⁶O gas release **Combustion Atmosphere:** boundary layer 2C18O+16O2=2C16O18O rich O₂, high CO₂, high steam 2CO+O2=2CO2 2H2+16O2=2H216O excess O₂ $\bigcirc CO \bigcirc C^{18}O \bigcirc H_2$ $C+O_{2}=CO_{2}$ 2C+O_{2}=2CO C¹⁶O¹⁸O+H Raction: C+H218O $C+CO_{2}=2CO$ local lean O2 C+H218O=C18O+H2 CO+H₂O=CO₂+H₂ Different from: C+O₂=CO₂ **Coal Particle**

ABSTRACT

In this study, limestone was calcined in O_2/CO_2 /steam atmosphere with heat supplied from coal combustion. Steam was supplied to the calciner to improve CaO reactivity. However, steam gasification behavior during coal combustion in O_2/CO_2 /steam atmosphere is unclear. This experimental study was conducted to clarify the role of steam in coal combustion using an isotope tracer technique. $H_2^{18}O$ was used to continuously trace the reaction proceeding. In a fuel-rich environment, both CO_2 and steam gasification occurred, generating H_2 , $C^{16}O$, $C^{18}O$, $C^{16}O_2$ and $C^{16}O^{18}O$. In an oxygen-rich environment, steam gasification still occurred and generated $C^{16}O^{18}O$. The combustion reaction equation should be described as $C + H_2^{18}O + {}^{16}O_2 = C^{16}O^{18}O + H_2^{16}O$ at high temperature and with high CO_2 and steam concentrations. The generation of $C^{16}O^{18}O$ formation in an oxygen-rich environment. Moreover, the increase of steam supply accelerated $C^{16}O^{18}O$ formation. Steam gasification is generally involved in coal combustion reaction. $C^{18}O$ and H_2 are first locally generated within coal particles through steam gasification and they are reconverted to $C^{16}O^{18}O$ and $H_2^{16}O$ through combustion during the boundary layer reactions.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

As one of the greenhouse gases, CO_2 should be captured before it is released into the environment [1,2]. It is traditionally separated from the flue gas via post-combustion chemical absorption [3–6]. Among all the post-combustion CO_2 capture technologies, calcium

• Both combustion and gasification reactions take place in $O_2/CO_2/steam$ atmosphere.

- Combustion reaction is C + $H_2^{18}O$ + ${}^{16}O_2 = C^{16}O^{18}O + H_2^{16}O$ in $O_2/CO_2/$ steam atmosphere.
- O₂ promotes C¹⁶O¹⁸O generation in fuel-rich environment.
- Steam accelerates the conversion of $C^{18}O$ to $C^{16}O^{18}O$.
- CO and H₂ are generated in internal pores before they are converted to CO₂ and H₂O.

ARTICLE INFO

Article history: Received 17 February 2016 Received in revised form 25 June 2016 Accepted 11 July 2016 Available online 18 July 2016

Keywords: Coal combustion High CO_2 and steam concentrations Steam gasification $H_2^{18}O$ $C^{16}O^{18}O$

E-mail addresses: yinwang@iue.ac.cn (Y. Wang), hyao@hust.edu.cn (H. Yao). http://dx.doi.org/10.1016/j.fuel.2016.07.034

* Corresponding authors.

0016-2361/© 2016 Elsevier Ltd. All rights reserved.

